A Robust and Diagnostic Information Criterion for Selecting Regression Models
نویسندگان
چکیده
منابع مشابه
A Robust and Diagnostic Information Criterion for Selecting Regression Models
We combine the selection of a statistical model with the robust parameter estimation and diagnostic properties of the Forward Search. As a result we obtain procedures that select the best model in the presence of outliers. We derive distributional properties of our method and illustrate it on data on ozone concentration. The effect of outliers on the choice of a model is revealed. Although our ...
متن کاملRobust Deviance Information Criterion for Latent Variable Models∗
It is shown in this paper that the data augmentation technique undermines the theoretical underpinnings of the deviance information criterion (DIC), a widely used information criterion for Bayesian model comparison, although it facilitates parameter estimation for latent variable models via Markov chain Monte Carlo (MCMC) simulation. Data augmentation makes the likelihood function non-regular a...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملA New Criterion for Selecting Models from Partially Observed Data
A new criterion PDIO (predictive divergence for indirect observation models) is proposed for selecting statistical models from partially observed data. PDIO is devised for \indirect observation models", the models where observations are only available through random variables indirectly, that is, some underlying hidden structure is assumed to generate the manifest variables. For example, unsupe...
متن کاملExtending the Akaike Information Criterion to Mixture Regression Models
We examine the problem of jointly selecting the number of components and variables in finite mixture regression models. We find that the Akaike information criterion is unsatisfactory for this purpose because it overestimates the number of components, which in turn results in incorrect variables being retained in the model. Therefore, we derive a new information criterion, the mixture regressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF THE JAPAN STATISTICAL SOCIETY
سال: 2008
ISSN: 1348-6365,1882-2754
DOI: 10.14490/jjss.38.3